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Abstract—The conjugate unsteady heat transfer between a translating droplet and its surrounding fluid at
moderate Reynolds number is numerically investigated. The energy equation is solved by the ADI finite
difference method with fluid motions inside and outside the droplet simulated by a series-truncation spectral
method. The range of Reynolds numbers investigated is between 0 and 50. The ratios of viscosity and
thermal conductivity between a droplet and its ambient flow range from 0 to 107 and 0.01 to 3, respectively.
It was found that by increasing the Reynolds number, the predicted rate of heat transfer is significantly
increased for fluid spheres as a result of increased fluid motions both inside and outside the droplet. On
the other hand, the transfer rate for a solid sphere is much less sensitive to the Reynolds number than are
the fiuid spheres. For a gas bubble. any increase in the Reynolds number only increases the amplitude and
frequency of the fluctuations in the Nusselt number and the steady-state Nusselt number is nearly inde-
pendent of the Reynolds number.

1. INTRODUCTION

THE PHENOMENA of transport of heat and mass
between a translating droplet and its surrounding fluid
have been investigated intensively due to a wide range
of industrial and scientific applications. As explained
in ref. [1], the problem is classified as ‘external’ or
‘internal’ if the transfer resistance is assumed neg-
ligible inside the droplet as compared to that of the
continuous phase or vice versa. A literature review of
these two extreme cases was given in ref. [1] and will
not be repeated here.

In many applications, the transport should be
treated as a conjugate process where resistances of
both the dispersed and the continuous phases are
comparable to each other, therefore, both should be
retained in the analysis. For conjugate problems the
majority of the work in the literature is concerned
with droplets or spheres in the creeping flow regime.
Cooper [2] developed an analytical solution of the
temperature fields with various combinations of ther-
mal properties for heat transfer to a sphere at very
low Peclet numbers.

Abramzon and Borde {3] used a finite difference
method to study the conjugate heat transfer from a
droplet in creeping motion. Both the fluid and the
solid spheres were included in the analysis. Their work
provides a comprehensive understanding of the trans-
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port mechanisms. However, they only addressed sys-
tems with identical thermal properties in both phases
that do not have application values in most realistic
systems.

The work of Abramzon and Borde [3] was extended
in ref. [1] to include variable ratios of heat capacities.
But in ref. [1], the ratio of thermal diffusivities is
restricted to unity and also the flow is in the creeping
regime. It was found that the temperature profile (as
made dimensionless by the difference between the tem-
poral bulk temperature of the droplet and the ambient
temperature) asymptotically approaches a steady-
state value that is independent of the initial tem-
perature profile in the droplet. As-a result of this
asymptotic behavior of the dimensionless temperature
profile, the Nusselt number also asymptotically
approaches a steady-state value.

For high Reynolds number flows, Chao [4] used
boundary layer assumptions to estimate the conjugate
heat transfer rates from a droplet. Due to the elliptic
nature of the interior region, such boundary layer
solutions will be inaccurate except at small times.

Based on the above literature review we realize that
there is a need to fill the gap due to the lack of work
for moderate Reynolds number flows in conjugate
heat transfer of a translating droplet. Closed-form
analytical solutions are available for both low and
high Reynolds number flows, whereas numerical com-
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NOMENCLATURE
a radius of the sphere or droplet W Zr
A ratio of thermal diffusivities, x, X ratio of dynamic viscosities, u, /-
B ratio of thermal conductivity, &k, /k - Z dimensionless temperature.
¢ specific heat (T—-THT,o—T,).
F, radial function for the stream function
Fo,  Fourier number. «,t/a’
02 OUTEr AUMBET. % a . Greek symbols
H ratio of volumetric heat capacities, o
‘ a thermal diffusivity
P1C1/PAC ; 1ir
k thermal conductivity ! ’ . .
0 tangential coordinate
Nu  Nusselt number dynamic viscosit
Pe,  Peclet number based on continuous “ ynamt y
. ) P density
phase properties. 2aU_ /x, .
. Tro tangential shear stress
P, Legendre polynomial of order n . . .
: . . . ¥ dimensionless stream function.
r dimensionless radial coordinate, R/a
R radial coordinate
Re, Reynolds number based on dispersed Subscripts
phase properties, 2p,aU. /i, 1 dispersed phase
Re, Reynolds number based on continuous 2 continuous phase
phase properties, 2p..aU,. /1, asy  asymptotic
t time b bulk
temperature ext  exterior of the droplet
u dimensionless radial velocity, U/U., int  interior of the droplet
U,  velocity of the sphere 0 initial condition
v dimensionless tangential velocity, V/U., o0 free stream.

putations seem to be the only tractable means for
moderate Reynolds number flows for a translating
droplet. In this study, our previous work [1] is
expanded to moderate Reynolds number flows. The
flow field was simulated by a series-truncation spectral
method and the decoupled energy equation was solved
again by the ADI method.

2. MATHEMATICAL MODEL

We consider a fluid sphere of radius a, initially at
a uniform temperature T, and falling at a constant
velocity U, in another immiscible fluid of infinite
extent. Al time 7 = 0 the temperature of the con-
tinuous phase fluid undergoes a step change from T,
to T, . It is the objective of this study to examine the
transient heat transfer rates between the fluid sphere
and its ambient fluid. The following assumptions are
used in the analysis.

(1) The size and shape of the fluid sphere stay con-
stant during the transient and the two fluids are non-
reacting. ‘

(2) Constant properties and negligible dissipations
are assumed. Therefore, the flow analysis is decoupled
from the energy equation. Buoyancy driven flows are
also neglected.

(3) There is no surface active agent and the flows
are fully developed and steady both inside and outside
the sphere.

(4) Absence of oscillation and rotation of the fluid
sphere is assumed.

(5) The maximum Reynolds number of the fluid
sphere, Re. = 2p..U_afu,, is moderate such that the
flows are laminar.

The schematic of the physical model and coordinate
system are shown in Fig. 1.

Uo

F1G. 1. Schematic of the coordinate system and typical flow
lines for a translating fluid sphere.
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2.1. Flow fields analysis

In terms of the dimensionless stream function, y,
the dimensionless radial and tangential velocities are
given by

1 oy

= 7sind 0 A
-1 &

L Gl. o)
r sin or

In the above, the stream function is made dimen-
sionless with U,a? the velocities are made dimen-
sionless with the free stream velocity U,, and the
radial coordinate r is made dimensionless with a. The
dimensionless equation of motion in terms of the
stream function is

v ol Ex
] 5<r2 sin? 0)] @

£ = _ai + sin 6 E_ 1 0
T o r? 00\sinf 66/°
Equation (3) is valid for both the fluid sphere and
its ambient flow. The Reynolds number should be
Re, =2p,U.a/u, for flow in the fluid sphere and

Re, = 2p, U, a/u, for ambient flow. The boundary
conditions to be satisfied by equation (3) are:

with

(a) at the axis symmetry (8 =0, )

v,

30 = 0 (uisfinite) “@)

¥, =0 (reference value); (%

(b) at the interface (r = 1)

oy Oy, .

P (no slip) (6)
T,4, = T, (continuity of shear stress) N
v =y, (®)

=0;

(c) at the free stream condition (r — )
¥, = irtsin? 6. 9

The series-truncation spectral method originally
proposed by Van Dyke [5] is used to solve the fluid
flow problem. The basic procedure of this method is
that we define the stream function as an infinite series
of Legendre polynomiais P, with corresponding radial
function F,

Y= i F,,(r)'f: P.(ndt; Z=cosh. (10)

n=1

Thus, from here
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i D p2) (1)
< —F,(n) P,
r ann+1)

(12)

U=

n=1

With equation (10), the equation of motion (equation
(3)) is transformed into a series of ordinary non-
linear differential equations. The series of ordinary
differential equations is then truncated properly and
solved by a cubic finite-element scheme. Details of the
solution procedure and flow results for 0.5 <
Re, < 50 are given in ref. [6].

2.2. Conjugate heat transfer analysis
The appropriate dimensionless energy equation for
the fluid sphere is

l 0z +1_Pie_2 0z 362
A0, TA 2 |"a T e
0°Z 20Z 1 2Z 1é*z
=W+r or + 955_‘- 2507 13

where Z is the dimensionless temperature based on
the initial temperature difference

Z=(T-T)/(Tio~Tx). (14)

The dimensionless parameters: Fo, (Fourier num-
ber) = «,t/a’ and Pe, (Peclet number) = 2aU, /a,. 4
is the ratio of internal thermal diffusivity (a,) to exter-
nal thermal diffusivity (a,).

Initial conditions

Z(r,0,Fo,=0)=1, 0<r<]1 (15)
Z(r,0,Fo, =0) = 1 <r< 0. (16)
Boundary conditions
62 0z, oz, .
6r == r=1 (continuity of heat flux)
B=k,/k, (ratioofthermalconductivities)
an
Z(r0,F0,)=0, r-oow (18)
0z
%—0 0=0 and = (19)
Z(r,0, Fo) = finite, r=0. (20)

3. SOLUTION PROCEDURE

At the droplet center (r = 0) the boundary con-
dition on Z(r = 0) is imposed by defining a new vari-
able for the interior region: W = Zr. Thus the bound-

ary condition at the droplet center becomes
Wir=0,n=0 2n

The transformed energy equation for the droplet
phase is
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L ew Peﬂ[ (cW w) v aw}
A 7:;““*'““‘ + il e i Tan
dFo, ar r ré
(cjzw 1 n2yy

=S+ cotf} W f 6?9?‘ 22
In the exterior region, a high density of nodes are used
near the interface, with fewer nodes near the free
stream. This is accomplished by using the trans-
formation # = 1/r. This transformation appears to be
a better choice than the usual transformation
& =In{r), in that the former transformation allows
one to obtain a close spacing near the interface, with-
out regard to the exact location at which the free
stream conditions are imposed, since n = 0 is a ‘point
at infinity’. The transformation = 1/r also needs
fewer total nodal points for comparable grid spacing
at the interface. The transformed energy equation for
the continuous phase is given by

0z P .0z oz
FFo, T3 | TMHG TS

2 42

0z 7’ 0z
5 +17 cot 6&38 R 23)
The step size Ay is chosen such that Ay = Ar/{Ar+1).
For the initial conditions at the interface, a control
volume analysis yields the initial interfacial tem-
perature of

Z(r=1,0,t=0) = Zy(n = 1,6,0)

= H/[(1+An+H]. (24)

Initial conditions for all other points being
Zr,0,1=0=1 0<r<l (25)
Z(n,6,1=0=0, 0<np<l. (26)

The boundary conditions imposed on equations {11}
and (12) are

WiEr=0.0)=0 27
B(fi}—;{f—%f)*Pg*O atr=1l.np=1 (28}
or r on
ow oz
‘ég‘ = {}, §§ =§, for =0andn {2?}
Z({n=0,0,1) =0 (freestreamcondition). (30)

Equations (22) and (23) were solved with an ADI
procedure similar to that used by Abramzon and
Borde [3], the primary exceptions are the trans-
formation used in equation (23), and the interfacial
boundary condition (equation (28)). It was not found
necessary to use any up-wind differencing scheme to
model the convective terms, these terms were modeled
with central-difference approximations, The dis-
cretization for the energy equations (equations (23)
and {24)) is identical to those shown in ref. [1] and is
skipped here.

When the finite difference energy equations are
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treated with the normal ADI method, a tridiagonal
matrix results everywhere in the computational
domain except at the interfacial boundary {# = 1) and
at the symmetrical boundaries (0 = 0 and ). At these
three boundaries the tridiagonal algorithm is modified
to account for the additional matrix components
which are outside the main three bands. A 41 x 41 grid
was used {(i.c. Ar = 1/40 and Af = z/40). The ume
step used varied with each simulation. it depends on
the Peclet number, the ratio of thermal diffusivities.
and the ratio of viscosities. For each simulation the
time step was held constant. The time step was not
increased with time for two reasons : the system might
be unstable if the time step was too large and the "L’
decompositions of the resulting matrices needed to be
recomputed with each change in the time step size.

4. COMPARISONS WITH PREVIOUS
INVESTIGATIONS

The Nusselt number will be used to compare the
present model with the various special cases cited
above and also will be used to present the result of
current calculations. The Nusselt number is defined
first. The bulk dimensionless temperature is given as

Z, = 3 Zr¥sin 0 dr do. (310
24e Jo

The Nusselt number is defined by the relation

2a(

= 2
M = G T —TK, 62
which is equivalent to
P4z,
R — 313
Nu = ;H dFm G3

One may also approximate the Nusselt number by
calculating the flux of heat from the surface of the
sphere

sin ) df
Hin=1

Zy

(34)

In numerical computations, equations (32) and (34)
may not predict identical Nusselt numbers. As dis-
cussed in ref. {1}, equation (34) was used to compute
all the results of Nusselt number in this paper,

The theory and coding may be partially verified by
comparison of the present results with certain pre-
vious numerical and experimental investigations.
Dennis er al. [7] used a similar series truncation
method to predict the steady-state Nusselt number for
a solid sphere with Pe, = 14.6 and Re, = 20. Their
analysis predicted a Nusselt number of Nu = 4.065.
On Fig. 2 the Nusselt number predicted by the present
method is compared with the result of Dennis ef al.
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NUSSELT NUMBER, Nu

=+ =DENNIS ot al.
—— PRESENT RESULTS,

X =107
A |
H =100
3
1 1 i
4] 0.25 0.50 078

FOURIER NUMBER, Fop

FiG. 2. Comparison of current results with that of Dennis et
al. [7] for a solid sphere.

[7]. To simulate the external problem H = 100 and
A = 1 were employed. With a finite value of H (rather
than an infinite value of H), the Nusselt number pre-
dicted by the present method is expected to be slightly
smaller than that for a pure external problem. The
present results compare favorably with the theoretical
solution of Dennis ez al. (Fig. 2).

The present method has also been compared with
the experimental investigation of Froessling [8].
Froessling [8] reported the local Nusselt number for
sublimation of naphthalene into air with Re, = 48.
The local Nusselt number is defined by

0Z
Nutoe = ~QIZ0) 5| . (35)

On Fig. 3 the local Nusselt number from Froessling [8]

- P02=l20

O DATA OF FROESSLING, Rep = 48

[ === PRESENT MODEL, Re, * 48,

x = 107

A= | oo
H =100

5] ]
— T

LOCAL NUSSELT NUMBER, Nujoc
o

ola ol 1 1
0 v/4 w/2 3x/4 L 4

TANGENTIAL COORDINATE, ¢

F1G. 3. Comparison of current results with that of Froessling
{8] for local Nusselt numbers.
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F1G. 4. Transient Nusselt number vs Fourier number for the
caseof 4 = 1, B =0.333, X = 0.333 and Pe, = 300.

and that predicted by the present model for Re, = 48,
B =100, A =1 and Pe, = 120 is reported. The com-
parison is generally very favorable (Fig. 3).

Based on the reasonable comparison with both the
theoretical investigation of Dennis et al. [7] and the
experimental results of Froessling [8], it is assumed
that the velocity profiles and the energy equation were
correctly solved for the moderate Reynolds number
conjugated heat transfer process.

5. RESULTS AND DISCUSSION

For a basic understanding, sample calculations
were made to examine the role of each parameter in
the heat transfer process. Figures 4-7 were prepared

R.z.w

NUSSELT NUMBER, Nu
[
1
5

L i I 1

0.1 0.2
FOURIER NUMBER, Fop

Fi1G. 5. Transient Nusselt number vs Fourier number for the
caseof 4 =1, B=3, X =0.333 and Pe, = 300.
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FiG. 6. Transient Nusselt number vs Fourier number for the
caseof 4 =1, B=0.333, X = 3 and Pe, = 300.

to show the effects of Reynolds number, dynamic
viscosity ratio and thermal conductivity ratio in terms
of the Nusselt number vs the Fourier number. For
practical application purposes and the limitations of
the current method, in Figs. 4-7 the Reynolds number,
Re,, was varied from 0 to 50, the dynamic viscosity
ratio, X, from 0.333 to 3.0, and the thermal con-
ductivity ratio, B, also from 0.333 to 3.0 for the
parametric study. The thermal diffusivity ratio, 4, is
kept unchanged at unity and the Peclet number, Pe,,
is 300 for Figs. 4-7. As the Reynolds number
increases, the strength of the internal circulation
increases accordingly in a fluid sphere and so does the
continuous phase velocity near the drop surface. This

12
Rep= 50
10H
Lt
P-4
<
& o
2 i .10
4
et
w
[
m -
=2
=
7k =t
=0
6
A
[e]

Q.1 0.2
FOURIER NUMBER, Fop

FiG. 7. Transient Nusselt number vs Fourier number for the
caseof A = 1. B= 3. X =3 and Pe, = 300.
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increased circulation with the corresponding increase
in the ambient fluid velocity greatly enhances the rate
of heat transport between the two phases. Con-
sistently in all cases plotted in Figs. 4-7. the Nusselt
number increases with the Reynolds number fol-
lowing similar trends. In general. the increased heat
transfer with the Reynolds number is mainly due to
an increase in the continuous phase velocity near the
drop surface, whereas the increased internal cir-
culation results in shorter oscillation cycles in the tran-
sient period.

Figures 4 and 5 show the effects of various thermal
conductivity ratios, B, for X = 0.333. Two consistent
trends are noticed. First, the Nusselt number increases
with increasing B and second, the fluctuating ampli-
tudes decrease with increasing B. The higher Nusselt
number for increased B is because the Nusselt number
is defined for heat transfer to the drop and higher
internal thermal conductivity will result in a higher
rate of heat diffusion from the surface to the interior
of the fluid sphere and therefore the rate of heat trans-
fer to the drop is increased. Higher internal thermal
conductivity also enhances the rate of heat transfer
from the drop surface to the center of the internal
circulation instead of letting the thermal energy stay
with the convective circulation loops that cause the
fluctuations in Nusselt number. Therefore, the fluc-
tuating amplitude 1s smaller as B is increased in the
heat transfer process.

Figures 6 and 7 also show the effects of different B
for a larger value of X, 3.0. Similar results are pre-
dicted as those for X = 0.333. Figures 4 and 6 dem-
onstrate the effects of different dynamic viscosity
ratio, X. When X becomes larger, the internal fluid is
more viscous and this increase in viscosity causes the
internal fluid to be more resistant to the induced inter-
nal circulation. Therefore, the strength of internal
circulation is weaker for larger values of X. Reduction
in internal circulation results in a longer oscillation
cycle and a lower Nusselt number as shown in Figs.
4 and 6. Figures 5 and 7 also show the effects of
variation of X. Similar conclusions may be made as
those stated for Figs. 4 and 6.

Next we discuss two extreme cases, i.e. a solid
sphere and a gas bubble.

For a solid sphere the conjugate heat transfer is less
dependent on the Reynolds number, particularly at
low values of B. For a solid sphere the interfacial
velocity is always zero, thus there is no increase in the
continuous phase velocity near the sphere surface due
to an increased circulation in the sphere. Also the
internal resistance is always due to pure diffusion, thus
the increase in transfer rates that correspond to the
increase in internal circulation will not be realized for
a solid sphere. The predicted Nusselt numbers are
plotted for the special cases of B = 0.333, 1.0 and 3.0
for A =1, X = 107, Re, = 20 and Pe, = 300 in Fig.
8. The Nusselt numbers using the same thermal par-
ameters (B, A, Pe,), with the creeping flow velocities
are also included in Fig. 8 for comparison purposes.
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SOLID SPHERE

——Rey= 20, X =107
«==CREEPING FLOW

; /8'3.0
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]
F4
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2 J N <
3 4h il SR S
>
4

0.1 0.2
FOURIER NUMBER, Fop

FiG. 8. Transient Nusselt number vs Fourier number for a
solid sphere (X = 107) with A = 1, and Pe, = 300 at various
B of 0.333, 1 and 3.

It is noted that for low B, the external flow variations
do not change the heat transfer significantly. This is
because at low B, the heat transfer resistance is mostly
with the interior of the solid sphere, any decrease in
external resistance due to increased convection only
alters the conjugate heat transfer slightly.

For a gas bubble (X = 0), the Nusselt number vs
the Fourier number plots for Reynolds numbers of 0
and 10 are given im Fig. 9. For a gas bubble, the
strength of the internal circulation is always a
maximum for a given Reynolds number. Because of

025k

0.20

“\ Rept 10
~

=0

NUSSELT NUMBER, Nu

oI

I ! i L L I

L i L

o 005
FOURIER NUMBER, fFo,

0.10

FI1G. 9. Transient Nusselt number vs Fourier number for a
gas bubble (X = 0) with 4 =2, B=0.01 and Pe, = 640 at
Reynolds numbers of 0 and 10.
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Table 1. Comparison of equation (36) with the present results
for the asymptotic Nusselt number for a solid sphere with
Pe, = 300 and Re. = 20

Nug,

B Equation (36) Present results
0.333 1.78 1.84
1.0 3.89 4.08
3.0 6.41 6.72

the corresponding extremely low B value, the heat
transfer resistance is almost totally with the bubble.
Any increase in Reynolds number only increases the
amplitude of the fluctuations and the frequency dur-
ing the transient, but the steady-state Nusselt number
is nearly independent of the Reynolds number.

It is instructional to revisit equation (30) of ref. [1].
This equation was shown to be useful in predicting
the steady-state Nusselt number for conjugate heat
transfer for the special case of 4 = 1

1 1!
Nuasy = [—B Nuinl + Nu:xl] '

The internal Nusselt number for pure diffusion is
given by

(36)

Nuy, = 6.58. 37)

For solid spheres, the external Nusselt number may
be reasonably approximated using equation (5-25) of
Clift et al. [9]

Nty = 141+ Pe; '1Pe23 Re2. (38)

For the cases investigated above, with Re, = 20,
Pe, = 300 the resulting value of Nuis 9.5. The Nusselt
numbers predicted by equation (36) are compared
with the present results in Table 1. As with low Rey-
nolds numbers, equation (36) appears to predict the
asymptotic Nusselt number with reasonable accuracy
for conjugate heat transfer from solid spheres for
moderate Reynolds numbers.

6. CONCLUSION

The conjugate heat transfer trom drops and solid
spheres has been investigated for moderate Reynolds
numbers. For fluid drops, it was found that the
increased velocities near the interfacial surface of a
drop as a result of an increase in the Reynolds number
also enhances the rate of conjugate heat transfer from
the drop.

The conjugate heat transfer from solid spheres
appears to be less sensitive to the change in the Rey-
nolds number. Also equation (36) was found to predict
reasonably well the asymptotic value of the Nusselt
number for conjugate heat transfer for Re, = 20 if the
thermal diffusivities of the two phases are equal.
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TRANSFERT THERMIQUE VARIABLE CONJUGUE POUR UNE SPHERE FLUIDE EN
TRANSLATION A DES NOMBRES DE REYNOLDS MODERES

Résumé—On étudie numériquement le transfert thermique variable et conjugué entre une goutteletie en
translation et son environnement fluide. 4 des nombres de Reynolds modérés. Léquation d'énergie est
résolue par une méthode ADI de différences finies, avec mouvements de fluide, a 'intérieur et a Uextérieur
de la gouttelette, simulés par une méthode spectrale d série tronquée. Le domaine des nombres de Reynolds
est compris entre 0 et 50, Les rapports des viscosités et des conductivités thermiques de la goutte et du
fluide ambiant varient respectivement de 0 & 107 et de 0,01 a 3. On trouve que I'accroissement du nombre
de Reynolds s’accompagne d"une augmentation du transfert qui résulte des mouvements accrus a l'intérieur
comme & l'extérieur de la gouttelette. D autre part, le flux transféré pour une sphére solide est moins
sensible au nombre de Reynolds que pour une sphére fluide. Pour une bulle de gaz. un accroissement
quelconque du nombre de Reynolds augmente seulement Famplitude et la fréquence des fluctuations dans
le nombre de Nusselt alors que le nombre de Nusselt de régime permanent est & peu prés indépendant du
nombre de Reynolds.

INSTATIONARER KONJUGIERTER WARMEUBERGANG AN EINER SICH
BEWEGENDEN FLUIDEN KUGEL BEI MITTLEREN REYNOLDS-ZAHLEN

Zusammenfassung—Der instationdre Wirmeiibergang zwischen einem bewegten Trépfchen und dem um-
gebenden Fluid wird fiir mittlere Reynolds-Zahlen numerisch untersucht. Die Energiegleichung wird mit
Hilfe des ADI-Finite-Differenzen-Verfahrens mit Fliissigkeitsbewegungen auBerhalb und innerhalb des
Tropfchens gelost, die durch ein Reihen-Abbruchs-Spektralverfahren simuliert werden. Der Bereich der
untersuchten Reynolds-Zahlen reicht von 0 bis 50. Das Verhdlinis der Viskositdten und der Wirme-
leitfihigkeiten von Trépfchen und umgebender Strémung reicht von 0 bis 107 bezichungsweise 0.01 bis 3.
Durch Erhéhen der Reynolds-Zahl wird der berechnete Wirmetbergang fiir fluide Kugeln wesentlich
verbessert. Dies ist auf zunehmende Fluidbewegungen innerhalb und auBerhalb des Tropfchens zuriick-
zufithren. Andererseits ist der Wirmeiibergang an feste Kugeln weit weniger von der Reynolds-Zahl
abhéngig als bei fluiden Kugeln. Fiir eine Gasblase fihrt jedes Anwachsen der Reynolds-Zahl nur zum
Anstieg der Amplitude und der Frequenz der Schwankungen in der Nusselt-Zahl, die stationdre Nusselt-
Zahl ist fast unabhingig von der Reynolds-Zahl.

HECTALIMOHAPHBIF COMNPSIKEHHBIMA TEMNJIONMEPEHOC OT XHUAKOHN COEPHI MPU
VMEPEHHBIX UUCJIAX PEAHONIBACA

AsnoTaumn-—YHCACHHO MCCHEAYSTCH COMPAXCHHBIA HECTAUHOHADHLIH TEIJIONEPEHOC MEXAY IBRXY-
wmiefica xanlelf i OKpYXaloOmeH e¢ KEAKOCTHIO IPH yMepeHHbix unciax Peifnossaca. Ypasrerue coxpa-
HEHHS OHEPIMH pELUACTCS ¢ MOMOMIBIO HENBHOH pPa3HOCTHOH CXeMbl METONOM HEPEMEHHBIX
HANPABJICHHH, NPUYEM ABHXKEHME XHIKOCTH BHYTDH KAILTH H BHC €€ MOICTHPYETCHE KOHCUHBIM HHCIIOM
WIEHOB CheKTpanbioro paia. Mccrenosanus NposoasTcs B RMAana3oHe 3HaveHuit wmcna Peliwonebaca
0-50. OTHOWEHHs BA3KOCTH U KOMPPHIHEHTOB TENAONPOBOAHOCTH KAIIH W OKPYXAIOIIEro ee noroka
HIMEHAIOTCR cooTeeTcTBenno ot 0 ao 107 # or 0,01 no 3. Haitneno, yro ¢ yBeIHYCHHEM YHChA Peiino-
NbACA PACHETHOE 3HAYECHHE CKOPOCTH TEIUIONEPEHOCA [N XKHAKMX Cep CYLIECTBEHHO BO3pacTaeT B
PeIyIBTATE MHTEHCHOUKALMH [BIKEHHS XHAKOCTH KaK BHYTDH Xanuw, Tax u cHapyxu. [lpn obrexanun
TBepoi cephl CKOPOCTL TENJIONEPEHOCa HAMHOTO MEHBUIC 3AaBHCHT OT ukcraa PefiHosnbica, wem ans
*uakux cdep. B cayuae nyssipbxa rasa ysenndeHwe wncaa PefiHONBACE BRIBIBACT JHIUIL POCT aMILIH-
Tyabi ¥ 4acTOThl KoNeGannii Mruopennoro wucia Hyccenbra, a cTaunonaproe wxeno HyccenbTa nouty
He 32BHCHT OT uucna PeiiHonkaca,



