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Abstract-The conjugate unsteady heat transfer between a translating droplet and its surrounding fluid at 
moderate Reynolds number is numerically investigated. The energy equation is solved by the ADI finite 
difference method with fluid motions inside and outside the droplet simulated by a series-truncation spectral 
method. The range of Reynolds numbers investigated is between 0 and 50. The ratios of viscosity and 
thermal conductivity between a droplet and its ambient flow range from 0 to IO’ and 0.01 to 3, respectively. 
It was found that by increasing the Reynolds number, the predicted rate of heat transfer is significantly 
increased for fluid spheres as a result of increased fluid motions both inside and outside the droplet. On 
the other hand, the transfer rate for a solid sphere is much less sensitive to the Reynolds number than are 
the fluid spheres. For a gas bubble. any increase in the Reynolds number only increases the amplitude and 
frequency of the fluctuations in the Nusselt number and the steady-state Nusselt number is nearly inde- 

pendent of the Reynolds number. 

1. INTRODUCTION 

THE PHENOMENA of transport of heat and mass 
between a translating droplet and its surrounding fluid 
have been investigated intensively due to a wide range 
of industrial and scientific applications. As explained 
in ref. [l], the problem is classified as ‘external’ or 
‘internal’ if the transfer resistance is assumed neg- 
ligible inside the droplet as compared to that of the 
continuous phase or vice versa. A literature review of 
these two extreme cases was given in ref. [l] and will 
not be repeated here. 

In many applications, the transport should be 
treated as a conjugate process where resistances of 
both the dispersed and the continuous phases are 
comparable to each other, therefore, both should be 
retained in the analysis. For conjugate problems the 
majority of the work in the literature is concerned 
with droplets or spheres in the creeping flow regime. 
Cooper [2] developed an analytical solution of the 
temperature fields with various combinations of ther- 
mal properties for heat transfer to a sphere at very 
low Peclet numbers. 

Abramzon and Borde [3] used a finite difference 
method to study the conjugate heat transfer from a 
droplet in creeping motion. Both the fluid and the 
solid spheres were included in the analysis. Their work 
provides a comprehensive understanding of the trans- 

port mechanisms. However, they only addressed sys- 
tems with identical thermal properties in both phases 
that do not have application values in most realistic 
systems. 

The work of Abramzon and Borde [3] was extended 
in ref. [l] to include variable ratios of heat capacities. 
But in ref. [l], the ratio of thermal diffusivities is 
restricted to unity and also the flow is in the creeping 
regime. It was found that the temperature profile (as 
made dimensionless by the difference between the tem- 
poral bulk temperature of the droplet and the ambient 
temperature) asymptotically approaches a steady- 
state value that is independent of the initial tem- 
perature profile in the droplet. As.a result of this 
asymptotic behavior of the dimensionless temperature 
profile, the Nusselt number also asymptotically 
approaches a steady-state value. 

For high Reynolds number flows, Chao [4] used 
boundary layer assumptions to estimate the conjugate 
heat transfer rates from a droplet. Due to the elliptic 
nature of the interior region, such boundary layer 
solutions will be inaccurate except at small times. 

Based on the above literature review we realize that 
there is a need to fill the gap due to the lack of work 
for moderate Reynolds number flows in conjugate 
heat transfer of a translating droplet. Closed-form 
analytical solutions are available for both low and 
high Reynolds number flows, whereas numerical com- 
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NOMENCLATURE 

radius of the sphere or droplet 
ratio of thermal diffusivities. x,:x2 
ratio of thermal conductivity, k, jk, 
specific heat 
radial function for the stream function 
Fourier number. zzt/u’ 
ratio of volumetric heat capacities. 

PICIIP,(‘Z 
thermal conductivity 
Nusselt number 
Peclet number based on continuous 
phase properties, 2aU, /rz 
Legendre polynomial of order n 
dimensionless radial coordinate, R/a 
radial coordinate 
Reynolds number based on dispersed 
phase properties, 2p, aU, lp , 
Reynolds number based on continuous 
phase properties, 2p,aU,/p, 
time 
temperature 
dimensionless radial velocity, U/U, 
velocity of the sphere 
dimensionless tangential velocity, V/U, 

M’ 
~ Zr. 

ratto of dynamic viscosities, 11, :pz 
Z dimensionless temperature. 

(T- T,)i(T,.,,- T, ). 

Greek symbols 
r thermal diffusivity 

‘1 Lr 
0 tangential coordinate 

c1 dynamic viscosity 

P density 
r& tangential shear stress 
IL dimensionless stream function. 

Subscripts 
1 dispersed phase 
2 continuous phase 

asy asymptotic 
b bulk 
ext exterior of the droplet 
int interior of the droplet 
0 initial condition 
cx: free stream. 

putations seem to be the only tractable means for (4) Absence of oscillation and rotation of the fluid 
moderate Reynolds number flows for a translating sphere is assumed. 
droplet. In this study, our previous work [1] is (5) The maximum Reynolds number of the fluid 
expanded to moderate Reynolds number flows. The sphere, Re2 = 2p, U,a/pc,, is moderate such that the 
flow field was simulated by a series-truncation spectral flows are laminar. 
method and the decoupled energy equation was solved 
again by the ADI method. 

The schematic of the physical model and coordinate 
system are shown in Fig. 1. 

2. MATHEMATICAL MODEL 

We consider a fluid sphere of radius a, initially at 
a uniform temperature To and falling at a constant 
velocity C:, in another immiscible fluid of infinite 
extent. At time t = 0 the temperature of the con- 
tinuous phase fluid undergoes a step change from T,, 
to T,. It is the objective of this study to examine the 
transient heat transfer rates between the fluid sphere 
and its ambient fluid. The following assumptions are 
used in the analysis. 

(1) The size and shape of the fluid sphere stay con- 
stant during the transient and the two fluids are non- 
reacting. 

(2) Constant properties and negligible dissipations 
are assumed. Therefore, the flow analysis is decoupled 
from the energy equation. Buoyancy driven flows are 
also neglected. 

(3) There is no surface active agent and the flows 
are fully developed and steady both inside and outside FIG. 1. Schematic of the coordinate system and typical flow 
the sphere. lines for a translating fluid sphere. 
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2.1. Flonl.fields analysis 
In terms of the dimensionless stream function, $, 

the dimensionless radial and tangential velocities are 
given by 

1 ati 
U=rZsin (1) 

-1 a$ 
a=----. 

r sin 0 dr (2) 

In the above, the stream function is made dimen- 
sionless with U,a’, the velocities are made dimen- 
sionless with the free stream velocity U,, and the 
radial coordinate r is made dimensionless with a. The 
dimensionless equation of motion in terms of the 
stream function is 

(3) 

with 

Equation (3) is valid for both the fluid sphere and 
its ambient flow. The Reynolds number should be 
Re, = 2p, U,a/p, for flow in the fluid sphere and 
Re2 = 2p,U,a/pc, for ambient flow. The boundary 
conditions to be satisfied by equation (3) are : 

(a) at the axis symmetry (6 = 0, n) 

ah ae = 0 (uistinite) 

$, = 0 (reference value) ; 

(b) at the interface (r = 1) 

8th a*- 
-=-L 

ar dr 
(no slip) 

Tru, = Tro? (continuity of shear stress) 

$1 = *? 

=o; 

(c) at the free stream condition (r + co) 

$2 = :r2 sin’ 8. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The series-truncation spectral method originally 
proposed by Van Dyke [5] is used to solve the fluid 
flow problem. The basic procedure of this method is 
that we define the stream function as an infinite series 
of Legendre polynomials P,, with corresponding radial 
function F, 

9 = f F,,(r) ’ P,tfldr; I = cos 8. (10) 
“= I 

Thus, from here 

(11) 

(12) 

With equation (lo), the equation of motion (equation 
(3)) is transformed into a series of ordinary non- 
linear differential equations. The series of ordinary 
differential equations is then truncated properly and 
solved by a cubic finite-element scheme. Details of the 
solution procedure and flow results for 0.5 < 
Re2 < 50 are given in ref. [6]. 

2.2. Conjugate heat transfer analysis 
The appropriate dimensionless energy equation for 

the fluid sphere is 

a22 2 az i 
=,r’+-&+y’e~+-g-j$ 

22 i a22 (13) 

where Z is the dimensionless temperature based on 
the initial temperature difference 

Z = (T- Tco)/(T,.,- T,). (14) 

The dimensionless parameters : Fez (Fourier num- 
ber) = a,t/a2 and Pe2 (Peclet number) = 2aCJ,/a,. A 
is the ratio of internal thermal diffusivity (a ,) to exter- 
nal thermal diffusivity (al). 

Initial conditions 

Z(r,0,Fo2=0)=1, O<r<l (15) 

Z(r, 0, Fo2 =O)=O, l<r<ccr. (16) 

Boundary conditions 

Rz = $, r = 1 (continuity of heat flux) 

B= k, /k2 (ratio of thermal conductivities) 

(17) 

Z(r.8, Fo2) = 0, r + co (18) 

az 
a = 0, 0 = 0 and A (19) 

Z(r, 8, Fo) = finite, r = 0. (20) 

3. SOLUTION PROCEDURE 

At the droplet center (r = 0) the boundary con- 
dition on Z(r = 0) is imposed by defining a new vari- 
able for the interior region : W = Zr. Thus the bound- 
ary condition at the droplet center becomes 

W(r = 0, t) = 0. (21) 

The transformed energy equation for the droplet 
phase is 
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In the exterior region, a high density of nodes are used 
near the interface, with fewer nodes near the free 
stream. This is accomplished by using the trans- 
formation 4 = I ir. This transformation appears to be 
a better choice than the usual transformation 
5 = In (r), in that the former transformation allows 
one to obtain a dose spacing near the interface. with- 
out regard to the exact location at which the free 
stream conditions are imposed, since 9 = 0 is a ‘point 
at infmity’. The transformation ? = l/r also needs 
fewer total nodal points for comparable grid spacing 
at the interface. The transformed energy equation for 
the continuous phase is given by 

The step size Apl is chosen such that AT = Ar/(Ari f). 
For the initial conditions at the interface, a control 

volume analysis yields the initial interfacial tern* 
perature of 

Z(r= l,f?,r=O)=Z&= 1,&O) 

= H/[(l +Ar)+H]. (24) 

Initial conditions for ail other points being 

Z(r,f?,t=O)=l, O-cr< 1 (23 

Z(q,8,r=O)=O, o<?f< 1. Gw 

The boundary conditions imposed on equations (I I) 
and (12) are 

W(r = 0, t) = 0 (27) 

Z(y = 0,6, t) =: 0 (free stream condition). (30) 

Equations (22) and (23) were salved with an ADI 
procedure similar to that used by Abramzon and 
Borde f3], the primary exceptions are the trans- 
formation used in equation (23), and the interfacial 
boundary conditian (equation (28)). It was not found 
necessary to use any up-wind differencing scheme to 
model the convective terms, these terms were modeled 
with central-difference approximations, The dis- 
cretization for the energy equations (equations (23) 
and (24)) is identical to those shown in ref. (If and is 
skipped here. 

When the finite difference energy equations are 

treated with the normal ADI method. a tridiagonal 
matrix results everywhere in the computational 
domain except at the interfacial boundary (r = 1) and 
at the symmetrical boundaries (0 = 0 and n). At these 
three boundaries the tridiagonal al’gorithm is modified 
to account for the additional matrix components 
which are outside the main three bands. A 4 I x 4 I grid 
was used (i.e. Ar = 1140 and A0 = x,40>. The time 
step used varied with each simulation. it depends on 
the Peclet number, the ratio of thermal diffusivities. 
and the ratio of viscosities. For each simulation the 
time step was held constant. The time step was not 
increased with time for two reasons : the system might 
be unstable if the time step was too large and the ‘LU 
decompositions of the resulting matrices needed to be 
recomputed with each change in the time step size. 

4. COMPARISONS WITH PREVIOUS 

INVESTHZATIONS 

The Nussett number wiIf be used to compare the 
present model with the various special cases cited 
above and also will be used to present the result of 
current calculations. The Nusseft number is defined 
first. The bulk dimensionless temperature is given as 

& = 3 
n: r 

51 20 0 
Zr’ sin B dr do. (31) 

The Nusselt number is defined by the relation 

which is equivalent to 

(32) 

(33) 

One may also approximate the Nusselt number by 
calculating the flux of heat from the surface of the 
sphere 

In numerical computations, equations (32) and (34) 
may not predict identical Nusseft numbers. As dis- 
cussed in ref. [I], equation (34) was used to compute 
al1 the results of Nusselt number in this paper, 

The theory and coding may be partially verified by 
comparison of the present results with certain pre- 
vious numerical and experimental investigations. 
Dennis et al. [‘?I used a similar series truncation 
method to predict the steady-state Nusselt number for 
a solid sphere with Pez = 14.6 and Re, = 20. Their 
anafysis predicted a Nusseft number of Mu = 4.065. 

On Fig. 2 the Nusselt number predicted by the present 
method is compared with the result of Dennis et al. 



Unsteady conjugate heat transfer from a translating fluid sphere at moderate Reynolds numbers 

R2 = 14.6 

----DENNIS l t 01. 
-PRESENT RESULTS. 
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FIG. 2. Comparison of current results with that of Dennis er FIG. 4. Transient Nusselt number vs Fourier number for the 
al. [7] for a solid sphere. case of A = 1, B = 0.333, X = 0.333 and Pe2 = 300. 

(71. To simulate the external problem H = 100 and 
A = 1 were employed. With a finite value of H (rather 
than an infinite value of H), the Nusselt number pre- 
dicted by the present method is expected to be slightly 
smaller than that for a pure external problem. The 
present results compare favorably with the theoretical 
solution of Dennis et al. (Fig. 2). 

The present method has also been compared with 
the experimental investigation of Froessling (81. 
Froessling [S] reported the local Nusselt number for 
sublimation of naphthalene into air with Re, = 48. 
The local Nusselt number is defined by 

Nu,, = -(2/Z&g . 
,= I 

On Fig. 3 the local Nusselt number from Froessling [S] 
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FIG. 3. Comparison of current results with that of Froessling FIG. 5. Transient Nusselt number vs Fourier number for the 
[8] for local Nusselt numbers. case of A = 1, B = 3, X = 0.333 and Pez = 300. 
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and that predicted by the present model for Re2 = 48, 
B = 100, A = 1 and Pe2 = 120 is reported. The com- 
parison is generally very favorable (Fig. 3). 

Based on the reasonable comparison with both the 
theoretical investigation of Dennis et al. [7l and the 
experimental results of Froessling [S], it is assumed 
that the velocity profiles and the energy equation were 
correctly solved for the moderate Reynolds number 
conjugated heat transfer process. 

5. RESULTS AND DISCUSSION 

For a basic understanding, sample calculations 
were made to examine the role of each parameter in 
the heat transfer process. Figures 4-7 were prepared 
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FIG. 6. Transient Nusselt number vs Fourier number for the 
case of A = 1, B = 0.333, X = 3 and Pe, = 300. 

to show the effects of Reynolds number, dynamic 
viscosity ratio and thermal conductivity ratio in terms 
of the Nusselt number vs the Fourier number. For 
practical application purposes and the limitations of 
the current method, in Figs. 4-7 the Reynolds number, 
Re,, was varied from 0 to 50, the dynamic viscosity 
ratio, X, from 0.333 to 3.0, and the thermal con- 
ductivity ratio, B, also from 0.333 to 3.0 for the 
parametric study. The thermal diffusivity ratio, A, is 
kept unchanged at unity and the Peclet number, Pe,, 
is 300 for Figs. 4-7. As the Reynolds number 
increases, the strength of the internal circulation 
increases accordingly in a fluid sphere and so does the 
continuous phase velocity near the drop surface. This 

G t-a*.50 

0. I 0.2 
FOURIER NUMBER, Fo2 

FIG. 7. Transient Nusselt number vs Fourier number for the 
caseofA=1.B=3.X=3andPe2=300. 
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increased circulation with the corresponding increase 
in the ambient fluid velocity greatly enhances the rate 
of heat transport between the two phases. Con- 
sistently in all cases plotted in Figs. 4-7. the Nusselt 
number increases with the Reynolds number fol- 
lowing similar trends. In general. the increased heat 
transfer with the Reynolds number is mainly due to 

an increase in the continuous phase velocity near the 
drop surface, whereas the increased internal cir- 
culation results in shorter oscillation cycles in the tran- 
sient period. 

Figures 4 and 5 show the effects of various thermal 
conductivity ratios, B, for X = 0.333. Two consistent 
trends are noticed. First, the Nusselt number increases 
with increasing B and second, the fluctuating ampli- 
tudes decrease with increasing B. The higher Nusselt 
number for increased Bis because the Nusselt number 
is defined for heat transfer to the drop and higher 
internal thermal conductivity will result in a higher 
rate of heat diffusion from the surface to the interior 
of the fluid sphere and therefore the rate of heat trans- 
fer to the drop is increased. Higher internal thermal 
conductivity also enhances the rate of heat transfer 
from the drop surface to the center of the internal 
circulation instead of letting the thermal energy stay 
with the convective circulation loops that cause the 
fluctuations in Nusselt number. Therefore. the fluc- 
tuating amplitude is smaller as B is increased in the 
heat transfer process. 

Figures 6 and 7 also show the effects of different B 
for a larger value of X, 3.0. Similar results are pre- 
dicted as those for X = 0.333. Figures 4 and 6 dem- 
onstrate the effects of different dynamic viscosity 
ratio, X. When X becomes larger, the internal fluid is 
more viscous and this increase in viscosity causes the 
internal fluid to be more resistant to the induced inter- 
nal circulation. Therefore, the strength of internal 
circulation is weaker for larger values of X. Reduction 
in internal circulation results in a longer oscillation 
cycle and a lower Nusselt number as shown in Figs. 
4 and 6. Figures 5 and 7 also show the effects of 
variation of I’. Similar conclusions may be made as 
those stated for Figs. 4 and 6. 

Next we discuss two extreme cases, i.e. a solid 
sphere and a gas bubble. 

For a solid sphere the conjugate heat transfer is less 
dependent on the Reynolds number. particularly at 
low values of B. For a solid sphere the interfacial 
velocity is always zero, thus there is no increase in the 
continuous phase velocity near the sphere surface due 
to an increased circulation in the sphere. Also the 
internal resistance is always due to pure diffusion, thus 
the increase in transfer rates that correspond to the 
increase in internal circulation will not be realized for 
a solid sphere. The predicted Nusselt numbers are 
plotted for the special cases of B = 0.333. I .O and 3.0 
for A = I, X = IO’, Re, = 20 and F’eZ = 300 in Fig. 
8. The Nusselt numbers using the same thermal par- 
ameters (B, A, Pe,), with the creeping flow velocities 
are also included in Fig. 8 for comparison purposes. 



Unsteady conjugate heat transfer from a translating fluid sphere at moderate Reynolds numbers 407 

SOLID SPHERE 

---CREEPING FLOW 

6 

6 
---_---- 

0 0.1 0.2 

FOURIER NUMBER, Foe 

Fro. 8. Transient Nusselt number vs Fourier number for a 
solid sphere (A’ = IO’) with A = 1, and Pe2 = 300 at various 

B of 0.333. 1 and 3. 

It is noted that for low B, the external flow variations 
do not change the heat transfer significantly. This is 
because at low B, the heat transfer resistance is mostly 
with the interior of the solid sphere, any decrease in 
external resistance due to increased convection only 
alters the conjugate heat transfer slightly. 

For a gas bubble (X = O), the Nusselt number vs 
the Fourier number plots for Reynolds numbers of 0 
and 10 are given in Fig. 9. For a gas bubble, the 
strength of the internal circulation is always a 
maximum for a given Reynolds number. Because of 

I 1 , I , 

0.06 C 

FOURIER NUMBER, Fog 

FIG. 9. Transient Nusselt number vs Fourier number for a 
gas bubble (I’ = 0) with A = 2, B = 0.01 and Pez = 640 at 

Reynolds numbers of 0 and 10. 

Table 1. Comparison ofequation (36) with the present results 
for the asymptotic Nusselt number for a solid sphere with 

Pez = 300 and Re2 = 20 

WS, 
B Equation (36) Present results 

0.333 1.78 1.84 
1.0 3.89 4.08 
3.0 6.41 6.72 

the corresponding extremely low B value. the heat 
transfer resistance is almost totally with the bubble. 
Any increase in Reynolds number only increases the 
amplitude of the fluctuations and the frequency dur- 
ing the transient, but the steady-state Nusselt number 
is nearly independent of the Reynolds number. 

It is instructional to revisit equation (30) of ref. [l]. 
This equation was shown to be useful in predicting 
the steady-state Nusselt number for conjugate heat 
transfer for the special case of A = 1 

The internal Nusselt number for pure diffusion is 
given by 

Nu,,, = 6.58. (37) 

For solid spheres, the external Nusselt number may 
be reasonably approximated using equation (S-25) of 
Clift et al. [9] 

Nu,,, = I +[I +Pe;‘]Pef”” ReTox. (38) 

For the cases investigated above. with Rez = 20. 
Pez = 300 the resulting value of Nu is 9.5. The Nusselt 
numbers predicted by equation (36) are compared 
with the present results in Table 1. As with low Rey- 
nolds numbers, equation (36) appears to predict the 
asymptotic Nusselt number with reasonable accuracy 
for conjugate heat transfer from solid spheres for 
moderate Reynolds numbers. 

6. CONCLUSION 

The conjugate heat transfer from drops and solid 
spheres has been investigated for moderate Reynolds 
numbers. For fluid drops, it was found that the 
increased velocities near the interfacial surface of a 
drop as a result of an increase in the Reynolds number 
also enhances the rate of conjugate heat transfer from 
the drop. 

The conjugate heat transfer from solid spheres 
appears to be less sensitive to the change in the Rey- 
nolds number. Also equation (36) was found to predict 
reasonably well the asymptotic value of the Nusselt 
number for conjugate heat transfer for Re2 = 20 if the 
thermal diffusivities of the two phases are equal. 
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TRANSFERT THERMJQUE VARIABLE CONJUGUE POUR UNE SPHERE FLUIDE EN 
TRANSLATION A DES NOMBRES DE REYNOLDS MODERES 

R&urn&--On etudie num~riquement le transfert thermique variable et conjugue entre une goutteiette en 
translation et son environnement fluide. a des nombres de Reynolds modiris. L-equation d’energie est 
resolve par une methode AD1 de differences finies. avec mouvements de fluide, ii I’interieur Ed j I’exterieur 
de fa gouttelette. simules par une methode spectrale a serie tronquie. Le domaine des nombres de Reynolds 
est compris entre 0 et 50. Les rapports des viscosites et des conductivites thermiques de la goutte et du 
fluide ambiant varient respectivement de 0 a IO7 et de 0.01 a 3. On trouve que f’accroissement du nombre 
de Reynolds s’accompagne d’une augmentation du transfert qui rest&e des mouvements accrus a I’interieur 
comme i l’exterieur de la gouttelette. D’autre part, le flux transfer4 pour une sphere solide est mains 
sensible au nombre de Reynolds que pour une sphere &tide. Pour une bulle de gaz. un accroissement 
quelconque du nombre de Reynolds augmente seulement i.amp~itude et la frequence des Ructuations dans 
le nombre de Nusselt alors que le nombre de Nusselt de regime permanent est 5 peu pres independant du 

nombre de Reynolds. 

INSTATION~RER KONJUGIERTER W~RME~BERGANG AN EINER SICH 
~EWEGENDEN FLUIDEN KUGEL BEI MITTLEREN REYNOLDS-ZAHLEN 

Zusammenfassung-Der instationire Warmeiibergang zwischen einem bewegten Triipfchen und dem um- 
gebenden Fluid wird fiir mittlere Reynolds-Zahlen numerisch untersucht. Die Energiegleichung wird mit 
Hilfe des ADI-Finite-Differenzen-Verfahrens mit Fliissigkeitsbewegungen aut3erhalb und innerhalb des 
Trijpfchens gel&, die durch ein Reihen-Abbruchs-Spektralverfahren simuliert werden. Der Bereich der 
untersuchten Reynolds-Zahlen reicht von 0 bis 50. Das Verhgitnis der Viskositaten und der Wirme- 
Ieitf~~igkeiten von Tr~pfchen und umgebender Str~mung reicht von 0 bis IO’ ~ziehungsweise 0.0 I bis 3. 
Durch Erhohen der Reynolds-Zahl wird der berechnete Wrirmeiibergang fiir fluide Kugeln wesentiich 
verbessert. Dies ist auf zunehmende Fluidbewegungen innerhalb und auBerhalb des Triipfchens zuriick- 
zufiihren. Andererseits ist der Wirmeiibergang an feste Kugefn weit weniger von der Reynolds-Zahl 
abhangig als bei fluiden Kugeln. Fiir eine Gasblase fiihrt jedes Anwachsen der Reynolds-Zahl nur zum 
Anstieg der Amplitude und der Frequenz der Schwankungen in der Nusselt-Zahl, die stationare Nusselt- 

Zahi ist fast unabhangig von der Reynolds-Zahl. 

HECTAHWOHAPHMH COIIP5DKEHHbIH TEHJIOI-IEPEHOC OT nMAKOH CQrEPbI I-IPM 
YMEPEHHbIX YHCJIAX PEtiHOJIbACA 

Awomum--Qicnenno nccneAyeTcn conpnxeiinbffi nemauxonapHbiI Tennonepemc Memy Ammy- 

meiica rranneii H orpy*ato~eii ee mAmc7bio np~ yMepeHHb#X xiscnax Petionbnca. Ypaeriemie coxpa- 
uemfx 3freprim pemaercx c noksombro iienmrok pawocrriofi cxehfbr ~erofioM nepenreiitiarx 
uanpa6nerfnii, rrpsfveM ~mixemre *umrocru erfrcp~ xarum H Brie ee k4oaenupyeTcx xorreuubtk4 Sricnohi 
qneuou cnekrpanbeoro pnAa. MccneAonamia npoBoAn~cn B AHana30He mavexidi wcna Peiisonbnca 

&SO. Omoruemn nst31comH B ~03+@iuHemoi9 TennonponoAiwcw Kannn w ovpynamuero ee noToKa 

hi3MeHRloTCn COOTB~TCTB~HHO OT One 10’ H orO,~lao 3.Ha&leHo, 'ITO cyneJWIeHHeM wcna PeiiHO- 

nbAca pacrlemoe 3iiaqeHWe cltopocm Temnonepeiioca Am XHAEHX c+ep cyrrrecr~enifo 803pacraeT B 

pe3ynbrare ~HTeHc~~~xau~~ ~nmrcetmx ~HAKOCTH icaK BH~TPH Kanmi, TaK si cxapyw. Hpu o@rexauue 
TBCpflOti C&&I CKOpocTb TenAO~~~~ HaMHOrO MCHbme 38BSfCHT 01 YHcnif PekwOnbACa, Ye% AAS 

mnAmx es&p. B cnyqae ny3bipbra fa3a yaenxrezwe wcna Peihfonbnca BbI3biBaeT nHWb pocF aswni- 

TyAb, I4 YaCTOTU Kone6aHHfi MrHOBeHHOrO WCJta HyCWIbTa,a CTiUuSOiiSpHOe 'IHCRO HywnbTa t'I09TH 

He-JaBHCtiTOTWtCnaPeiiHOJIbACa. 


